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Origami has received much attention in geometry, mathematics, and engineering due to its potential to
construct 3D developable shapes from designed crease patterns on a flat sheet. Waterbomb tessellation,
which is one type of traditional origami consisting of a set of waterbomb bases, has been used to create
geometrically appealing 3D shapes and been widely studied. In this paper, we propose a method for
approximating target surfaces, which are parametric surfaces of varying or constant curvatures, using
generalized waterbomb tessellations. First, we generate a base mesh by tiling the target surface using

ggzg 1MSC: waterbomb bases. Then, by applying a simple numerical optimization algorithm to the base mesh, we

99-00 achieve a developable waterbomb tessellation, which can be developed onto a plane without stretching.
We provide a prototype system using which the user can adjust the resolution of the tessellation and
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access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Origami, also known as paper folding, has the potential to con-
struct 3D shapes by folding thin sheets of paper along predefined
creases without introducing cuts and distortions. An origami piece
can be defined by its crease pattern, which contains a set of moun-
tain and valley folded lines (shown in red and blue in this paper)
appearing on a sheet of paper when the origami is opened flat.
The crease pattern is scale independent and thus can be applied
at the nanometric (Edwards & Yan, 2014; Nangreave, Han, Liu, &
Yan, 2010; Rothemund, 2006; Terring, Voigt, Nangreave, Yan, &
Gothelf, 2011) or space level (Lang, 2009; Miura, 1989; Pohl &
Wolpert, 2009; Wilson, Pellegrino, & Danner, 2013).

Among the types of origami, waterbomb tessellation is a tradi-
tional one that can be used to create geometrically appealing 3D
shapes, such as that in Fig. 1(a). As shown in Fig. 1, a 3D water-
bomb origami (a) is defined by its crease pattern (b), which con-
tains a set of waterbomb bases (c). Such origami pieces are
developable, which is guaranteed by the fact that the sum of the
sector angles around each interior vertex equals 360°. The
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waterbomb base, which is also referred to as a regular base, has
a mirror-symmetric property. The base has the geometric feature
containing four valley and two mountain folded lines meeting at
the center vertex. Here, we introduce a generalized waterbomb
base (Fig. 1(d)) that inherits this geometric feature but could omits
the mirror-symmetric property. Furthermore, we introduce a gen-
eralized waterbomb tessellation that contains generalized water-
bomb bases to approximate target 3D surfaces.

Waterbomb tessellation has also been widely studied. Tachi,
Masubuchi, and Iwamoto (2012) analyzed the kinematics of water-
bomb tessellations to achieve adaptive freeform surfaces. They
generated a model based on the multiple degree of freedom inher-
ent in waterbomb tessellation containing regular bases. Addition-
ally, Kuribayashi et al. (2006) made the first origami stent to
achieve a large deployable ratio. Onal, Wood, and Rus (2013)
demonstrated a worm robot, and Lee, Kim, Kim, Koh, and Cho
(2013) fabricated a deformable wheel robot. Chen, Feng, Ma,
Peng, and You (2016) proposed a comprehensive kinematic analy-
sis on a waterbomb origami with one degree of freedom motion
under symmetric folding.

In this paper, we approximate target surfaces, which are para-
metric surfaces of varying or constant curvatures, using general-
ized waterbomb tessellations. An overview of our method is
shown in Fig. 2. We take a 3D parametric surface, e.g., Fig. 2(a),
as input. Then, we sample u and v coordinates in the parametric
ur-plane to achieve a quad approximation (Fig. 2(b)). Next, we
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Fig. 1. Geometry of generalized waterbomb origami.
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Fig. 2. An overview of our method.

generate a base mesh (Fig. 2(c)) by creating waterbomb bases in
the quads. Here, our prototype system enables us to generate base
meshes with variable resolutions and modify waterbomb bases
interactively. Then, by applying a simple numerical optimization
algorithm to the base mesh, we achieve a developable waterbomb
tessellation (Fig. 2(d)), which can be developed onto a plane with-
out stretching. Finally, the user can fold the crease pattern (Fig. 2
(e)) to achieve the origami piece (Fig. 2(f)). We demonstrate several
resulting approximations, which expands the exploration of build-
ing developable structures using origami.

The rest of this paper is organized as follows. Related work is
discussed in Section 2. Section 3 presents a detailed description
of our method. In Section 4, we demonstrate several developable
approximations. We conclude this paper in Section 5 and discuss
future work.

2. Related work

TreeMaker is software used to design flat-foldable origami
(Lang, 2006). Its basic concept was first introduced by Meguro
(1991) and fully described by Lang (1996). This software generates
a crease pattern from a graph tree that represents the base struc-
ture of the object by using a circle/river packing technique. Tess
is another computer program that makes crease patterns for ori-
gami tessellations and involves twist folds in a repeating pattern
(Bateman). These approaches focus on flat-foldable origami, while
we aim at approximating 3D surfaces using origami which may not
be flat-foldable.

Mitani proposed methods for designing 3D origami on the basis
of rotational sweep (Mitani, 2009, 2011). The methods generate a
crease pattern for an axisymmetric structure by adding flaps out-
side of the target shape. Although the flaps might be considered
obtrusive, his method succeeds in generating 3D curved origami.
One of his methods (Mitani, 2012), which combines the advantages
of the rotational sweep and mirror reflection approaches, has been
used to build geometrically attractive origami pieces. Mitani &
Igarashi (2011) also proposed an interactive system that allows

the user to design 3D curved origami surfaces with mirror opera-
tions specified by selecting and moving vertices on the 3D origami
while maintaining the developability of the resulting shape.

Zhao, Kanamori, and Mitani (2017) proposed a method for han-
dling a family of axisymmetric 3D origami consisting of triangle
facets. This method first designs a rotationally-symmetric crease
pattern and then calculates an axisymmetric 3D origami piece on
the basis of geometric constraints. By adding a cut in the crease pat-
tern, such 3D origami can be axisymmetrically deployed or flat-
folded by changing one parameter. More recently, Zhao, Kanamori,
and Mitani (2018) proposed a method for designing axisymmetric
3D origami based on a mirror-symmetric crease pattern. The
method explored the variations of the calculated 3D origami and
presented a rigid folding motion that can axisymmetrically deploy
or flatten the 3D shape.

For approximating 3D surfaces using origami, Tachi proposed
the Origamizer algorithm (Tachi, 2009, 2010a), which generates
crease patterns for arbitrary 3D triangle mesh models with a topo-
logical disc condition. Then, he proposed a system (Tachi, 2013) for
approximating a target shape by using a subset of generalized
Resch patterns. However, these approaches were based on the
tucking technique, which hides unnecessary areas of a sheet of
paper inside the shape. He also proposed a design system
Freeform Origami (Tachi, 2010b), which allows the user to vary a
known origami in 3D while preserving the developability and other
optional conditions inherent in the crease pattern. Through drag-
ging the vertices in 3D, the system enables the user to edit a given
pattern into a freeform. However, the method cannot fully support
approximating target 3D surfaces.

In addition, several approximating approaches based on modi-
fied Miura-ori have been proposed. Zhou, Wang, and You (2015)
developed a vertex method for generating developable 3D origami
between two singly curved surfaces. Song, Zhou, Zang, Wang, and
You (2017) proposed a mathematical framework for the generation
of rigid-foldable 3D origami based on the crease pattern that can
simultaneously fit two doubly curved surfaces with rotational
symmetry about a common axis. Dudte, Vouga, Tachi, and
Mahadevan (2016) used modified Miura cells to approximate
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orienTable 3D surfaces with positive, zero, negative, and mixed
Gauss curvatures. In this paper, we focus on another basic origami
tessellation, waterbomb tessellation, to fit onto target surfaces.

3. Approximating target surfaces

We demonstrate the generation of a base mesh in Section 3.1.
Optimizing the base mesh to achieve a developable approximation
is discussed in Section 3.2.

3.1. Generation of base mesh

The generation of the base meshes on parametric surfaces is
versatile; we can generate base meshes on axisymmetric or non-
axisymmetric target surfaces and on orientable or non-orientable
target surfaces. We tile a given surface using quads for the initial
approximation. Parametric surfaces are taken as input in this work.
Therefore, we can easily achieve a set of quads by isometrically
sampling u and » coordinates, which vary within a certain domain
D in the parametric uzv—plane, of the input parametric surface.

Hereafter, we explain the case of a catenoid surface as an exam-
ple. A catenoid surface (Fig. 2(a)) is defined with u, » parameters
as:

P(x,y,z) = <cosh% cos u,coshg sinu, v>7 (1)
where u € [0,27], v € [-m, 7], and c is a non-zero real constant that
is set as 2.5 in this case. As shown in Fig. 3(a) and (b), we isometri-
cally sample u and v coordinates to achieve sampling points. The
steps of u and v for sampling are denoted as Au and Av, which equal
2n/N, and 27 /N,, respectively. N, indicates the number of quads in
one strip, which is shown in red and green. N, means the number of
strips used for constructing the approximation. Both N, and N, are
integers and set as 10 in this case.

As can be observed from waterbomb tessellations, adjacent
strips are shifted against each other by Au/2 in the u direction in
the uz-plane. A naive way of doing this is to shift only odd strips
by —Au/2. However, this works with axisymmetric shapes but fails
with non-axisymmetric ones because quads along boundaries
become jagged and cannot cover the target surfaces. To handle
both axisymmetric and non-axisymmetric shapes, we first tem-
porarily generate N, + 1 quads for odd strips. Suppose that param-
eter u in the given parameter surfaces ranges from us to u.. Here,
N, +1 quads are achieved in the range from us;—Au/2 to
U, + Au/2. In particular, the first quad’s u ranges from u; — Au/2
to us + Au/2, and the last quad’s u ranges from u, — Au/2 to

Strip N, — 1

Au
P(ugs — - vs + Av)

Strip 2

Strip 1 P(us + Au, vs)
Strip 0 P(ug, v5)
(@) (b)
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u, + Au/2 (Fig. 3(b)). In the case of axisymmetric shapes, the first
and the last quads are identical because parameter u is periodic.
We then generate a waterbomb base in each quad and select only
a half of the first and the last waterbomb bases to ensure N, water-
bomb bases in each strip (shown in Fig. 5 and discussed below).

During the initial approximation using quads, we allow the user
to adjust the density of quads by changing N, and N, interactively.
Fig. 3(c) is an approximation created by double density sampling
both in the u and v directions, and thus, it has four times more
quads than that in Fig. 3(a) to represent the target surface. The
more quads we use, the more accurately we can approximate the
target surface. Considering fabrication by paper-folding, however,
we also have to consider the increase of labor. Balancing the
approximation accuracy and fabrication labor is an interesting
problem, which is left as future work.

Next, we generate each waterbomb base by adding and moving
three auxiliary vertices, P,, Py, and P., as shown in Fig. 4. At an ini-
tial state (Fig. 4(a)), P4 and P, are the midpoints of segments PP,
and P; P4, respectively; P. is the midpoint of segment P4P,. We con-
nect boundary points Py, P,, P3, P4, P4 and P, to P.. The positions
of Py, P,, P3,and P, are fixed. We then move P,, P4 and P, to form
a structure that “looks” like a waterbomb base, with four valley
and two mountain folded lines. Specifically, P. can be moved along
the normal of quad P;P,PsP, (Fig. 4(b)). P, can be “dragged down”
by rotating it in plane P,P.P; (Fig. 4(c)). Similarly, P; can be
“dragged up” by rotating it in plane P,P.P; (Fig. 4(d)).

Finally, we merge adjacent bases to achieve a base mesh (Fig. 5
(c)). Fig. 5(a) is an approximation with gaps. By averaging the posi-
tions of adjacent vertices (b), we achieve a base mesh without gaps
as shown in (c). Note that there are N, + 1 bases for odd strips.
Here, we select only the right part of the first base and the left part
of the last base to ensure N, bases in the odd strips.

3.2. Numerical optimization

In this section, we apply a simple numerical optimization to
base meshes to produce developable surfaces. We use an angle
constraint (Tachi, 2010b), which requires that the total angle
around a developable vertex i be 360°:

Ki-1

D; = 360° — Z(x,;k =0,
k=0

(2)

where K; is the total number of sector angles around vertex i, and o
is the k-th incident sector angle of vertex i. In our work, we classify
vertices as interior vertices having six adjacent facets and boundary

Au

P(u, + >

, Vs + Av)

Fig. 3. Initial approximation using quads.
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Fig. 4. Modification of waterbomb base

Left part of Right part of
the last base ; the first base
¢-§:>
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Fig. 5. Merging waterbomb bases to achieve base mesh.

vertices having less than six adjacent facets. For a developable sur-
face, all the interior vertices should satisfy the angle constraint.
We implemented the Levenberg-Marquardt algorithm to solve
such an optimization problem. Boundary/interior vertices are
viewed as fixed/free nodes, respectively. For each iteration of the
Levenberg-Marquardt algorithm, we evaluate the maximum 0y,
minimum o, and average o,,. of the sum of angles around each
interior vertex for a termination criterion. Correspondingly, we
introduce the errors of eyq, €min, and eg,. represented as:

emax = |360° — Clmax|.
€min = |360O — OCmin‘. (3)
€ave = |360° — ogpel.

Moreover, we introduce e, as the maximum among €max, €min, and
eare. The procedure is terminated when e, is less than ey. In our
experiment, we set e; as 1e—5 to produce a developable surface.
Fig. 6 shows graphs of convergence created during optimization
on the base mesh (Fig. 2(c)), where Fig. 6(a) shows the relationship
between the numbers of iterations and values of o,qx, %min, and
dqre. Correspondingly, Fig. 6 (b) demonstrates the values of
€max, €min, aNd €q, that calculated during the iterations. In this case,
et Decomes less than 1e—5 when the number of iterations is 198.

4. Results

We developed a prototype system using Java to implement our
method. We ran our system on an Intel(R) Core(TM) i7-4770 CPU
with an 8-GB-RAM PC. For a given target surface, our method
allows the user to generate base meshes with variable resolutions
and then produces developable approximations. As shown in Fig. 7,
we show four results, each of which contains a base mesh, its cor-
responding approximation, and the approximation with the target
surface, as shown in Fig. 2(a).

Table 1 shows the parameters in detail and the results of the
models shown in Fig. 7. e, of each approximation was less than
le—5 after optimization, with which we consider the approxima-
tion to be developable. To evaluate the difference between the
resultant approximation A and the target surface T, we define dis-
tance d(A,T) as:

d(A,T) =mean[d(x,T)],x € A,

d(x,T) =min[d(x,y),y €T, @

410 - — Tmax — Emax
= ®min 40 1 )
400 A a e
— Qqye —— €ave
35
390 4 30 |
380 4 25
3
— =
20 O 20
b5) 370 g:
a M 15
360 -
10
350 4 s
340 T T T T T 0 4 T T T

Numbers of iterations

(@)

10 20 30

Numbers of iterations

(b)

Fig. 6. Graphs of convergence created during optimization for producing developable surface.
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Fig. 7. Approximations with variable resolutions for same target surface.
Table 1
Parameters in detail and statistics of models shown in Fig. 7.
Approximations Ny Ny Bases rotal d(A,T) Time

(a) 8 6 48 9.68e—6 3.29e-2 0.31 min
(b) 10 7 70 6.54e—6 2.95e-2 0.85 min
(c) 13 9 117 9.80e—6 241e-2 9.35 min
(d) 20 14 280 9.94e—6 1.61e-2 158.60 min

where x and y denote vertices of the approximation A and the target
surface T, respectively. d(x,y) denotes the Euclid distance between x
andy. d(x, T) is the shortest distance between x and a set of y from T.
d(A, T) is similar in spirit to the Hausdorff distance, which is used to
measure the difference between two surfaces. To compute d(x, T),
we sample all vertices from the approximation A for x by consider-
ing A is a discrete tessellation. When the target surface T is contin-
uous, Dudte et al. (2016) use an optimization procedure to find the
optimized u and v coordinates, which let the distance between y
and x become shortest. Here, we densely sample a set of y by sub-
dividing T, and then find the closest y for x. d(A, T) is normalized by
the diagonal length of the bounding box of the target surface T. Note
that we are only concerned about the difference from A to T and do
not measure the inverse distance d(T,A);d(A,T) and d(T,A) are dif-
ferent because they are not symmetric. In Table 1, wenote that as
the number of waterbomb bases increased, d(A, T) decreased, which
means that the result became closer to the target surface at the cost
of more computational time.

We fabricated several approximations, shown in Fig. 8, where
(a) shows a catenoid and (b) shows a cylinder. Both approxima-
tions contained 48 waterbomb bases. (c) shows a sphere contain-
ing 75 waterbomb bases, and (d) shows a vase containing 112
waterbomb bases. For each result shown in Fig. 8, we demonstrate
a 3D model of the approximation, a crease pattern, and an origami
piece.

We also approximated several 3D surfaces and show its crease
pattern and rendered 3D model in Fig. 9, where (a) shows an
approximation of a catenoid, (b) a sphere, (c) a cylinder, (d) a vase,
(e) a torus, (f) a hyperbolic paraboloid, (g) a mobius strip. Details of
the target surfaces are demonstrated in Table 2. Each surface

((a)-(e)) has an axisymmetric structure, and thus the boundary
vertices along the left and right parts of the crease pattern are
located at identical 3D positions to form the resulting approxima-
tion. Note that these vertices, which are used to connect the left
and right parts of the crease pattern, have six adjacent facets in
the 3D model. Therefore, we also applied our optimization process
to these vertices in order to make them developable. For approxi-
mating torus, we not only connect the left and right parts of the
crease pattern, but also the top and bottom parts (when N, is
even). As a result, we can generate a seamless approximation of
torus (Fig. 9(e)). Additionally, we show an approximation of a
hyperbolic paraboloid, which is the non-axisymmetric surface in
Fig. 9(f), and an approximation of a Mdébius strip, which is the
non-orientable surface in Fig. 9(g). The Mébius strip approximation
is not connected because the waterbomb bases at the start and end
parts of the approximation had different orientations. Meanwhile,
we demonstrate the detail results of the approximations (Fig. 9) in
Table 3 correspondingly.

In terms of fabrication, folding a waterbomb tessellation is not
an easy task because it requires multi-fold simultaneous actuation.
The folding process becomes more difficult when the waterbomb
tessellation contains more waterbomb bases. Pre-folding crease
lines on a sheet of paper can alleviate this problem. However, the
crease lines on paper become fuzzy after several pre-foldings.
Therefore, we showed only crease patterns and rendered 3D mod-
els (Fig. 9) instead of results with folded paper. A more effective
way for fabricating complex approximations with many water-
bomb bases would be printing the crease patterns on a textile
using polymers because a textile can be folded many times without
obvious fatigue.
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Fig. 9. Developable approximations consisting of generalized waterbomb tessellations.
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Table 2
Target surfaces used for generating developable approximations shown in Fig. 9.

Targets Equations (x,y,z)
(a) (cosh % cosu, cosh % sinu, v),u € 0,27, v € -7, 7]
(b) (cos wcosu,cos wsinu,sin v),u € [0,27), v € [3%. 5]
(c) (cosu,sinu, v),u € [0,2n), v € |-, 7|
(d) ((2+sinwv)cosu, (2 +sinv)sinu, —v),u € [0,2n], v € [-3,4]
(e) ((3 4 cos v)sinu, (3 + cos v) cosu,sin v),u € [0,27), v € [-7, 7]
(f) (u,v,uv),ue[-1,1,ve[-1,1]
(g) ((14%cosy)cosu, (1 +4cosy)sinu,¥siny),u e 0,27, v € [-1,1]
Table 3
Details of statistics of models shown in Fig. 9.
Approximations N, N, Bases €total d(A,T) Time
(a) 10 10 100 9.43e-6  2.60e-2 4.79 min
(b) 25 10 250 9.96e-6  1.44e-2  152.27 min
(c) 10 10 100 9.53e-6  1.59e-2 2.58 min
(d) 21 10 210 9.80e-6  1.59e-2 74.09 min
(e) 55 10 550 9.96e-6 8.97e-3  853.18 min
(f) 10 10 100 6.22e-6  1.35e-2 2.35 min
(g) 22 3 66 9.29e-6  1.40e-2 0.44 min

5. Conclusion and future work

We proposed a method for approximating target surfaces,
which are parametric surfaces of varying or constant curvatures,
using generalized waterbomb tessellations. First, we described
the generation of a base mesh by tiling the target surface using
waterbomb bases. Then, we applied a simple numerical optimiza-
tion algorithm to the base mesh to produce a developable approx-
imation. Several developable approximations were presented to
demonstrate the validity of our method. We provided a prototype
system which enables us to interactively generate base meshes
with variable resolutions and modify waterbomb bases.

Our work is different from Origamizer (Tachi, 2009, 2010a) and
the system (Tachi, 2013), because ours is not based on the tucking
technique, which hides unnecessary areas of a sheet of paper inside
the shape. Our method is also differs from Freeform Origami (Tachi,
2010b), which generates a freeform surface by dragging the ver-
tices of an origami in 3D. In addition, several existing approximat-
ing works were based on modified Miura-ori (Dudte et al., 2016;
Song et al., 2017; Zhou et al., 2015), while we focus on the water-
bomb tessellation, another basic origami tessellation, to fit on tar-
get surfaces. We have demonstrated that our method can tile
waterbomb bases on target surfaces, which can be axisymmetric
or non-axisymmetric as well as orientable or non-orientable.

As future work, three aspects of our study can be improved: (i)
finding an optimal density to balance the approximation accuracy
and amount of fabrication labor when generating a base mesh, (ii)
achieving a developable approximation while restricting d(A, T),
that is, the distance between the resultant approximation A and
target surface T, and (iii) generating flat-foldable and self-
intersection-free approximations. Furthermore, we hope this work
can be extended to approximate complex 3D models which can be
parameterized into uz-plane and pave the way of fully solving the
inverse-origami-design problem.
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